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 Aim of this study

 Propose a load estimation method based on the law of energy

conservation

 Build a disturbance compensation control system using the

estimated load

• We proposed a load estimation method on the basis of the law of

energy conservation.

• Additionally, we built a load compensation control system in which

the duty ratio is determined by PID element and compensation

term calculated from the estimated load.

• The proposed compensation control is able to improve a transient

amplitude response significantly particularly at large load.

[ GT-17 ]

Linear Resonant Actuator (LRAs) are actuators that reciprocate by

alternating currents excitation.

○Simple structure, easy control, direct drive

Analysis Results

Basic Structure and Operational Principle

Analysis Model and Condition

Transient response when load is suddenly applied at 0s

Average thrust (approximation)

 Problem

 It takes much time until the 

amplitude of the LRA becomes 

steady state after it decreases 

once by external load.

 Compensating the load disturbance 

is desirable without a load sensor.
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Quantity Value 

Remanence of magnets (T) 1.42 

Mass of mover (g) 6.95 

Spring constant (N/mm) 13.36 

Viscous damping coefficient (N·s/m) 0.14 

Thickness of stator and mover (mm) 10.25 

Detecting time tc (s) 250 

Length of interval c (s) 1500 

Coil resistance (on) (mΩ) 320 

Coil resistance (off) (mΩ) 290 

Input voltage (V) 3.6 

 

Parameters Only PID control 
With disturbance 

compensation control 

Proportional gain KP 1.0 1.0 

Integral gain KI 0.034 0.034 

Derivative gain KD 0.5 0.5 

Compensation gain KL  0.6 
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Effectiveness of the proposed compensation control
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△：Pole by current

□：Pole by magnet

In case of only PID control, the duty increases

after the deviation e(t) increases. On the other

hand, the disturbance compensation control is

able to respond rapidly to the sudden load due

to the compensation term.

Load estimation function is formulated on the basis of the law of energy

conservation.

This function uses two back-EMF signals V1, V2 and duty ratio in PWM

control.

The load of 1.2 N was suddenly applied at the time of 0 sec.

The duty ratio increased quickly under the disturbance compensation control. As a

result, the maximum decline in amplitude was 0.18 mm at a half cycle.

When only PID control was employed to determined the duty ratio, the maximum

decline was 0.45 mm at one and a half cycle.

The proposed control was able to improve a transient amplitude response significantly.

Load estimation results
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The loads were largely estimated and the

theoretical validity of the proposed estimation

function was confirmed.

Average estimation errors at 0.4, 0.8, 1.2 N

were 32, 11, 7.5 %, respectively.

Correction function

Maximum amount of decline in amplitude

Dynamic analysis condition

2-D FEM mesh

Gain parameters

Transient responses under with and without compensation
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The effect of compensation was remarkable

particularly when a large load was suddenly

applied.

Load estimation method

Schematic diagram of feedback control

Estimation function

      21
ˆ VgVgDutyFl














2
1/ 32

1




k

aa
a























2
1/

42

32

2

2




k

aacf
a

k























2
1/

42

32

2

3




k

aacf
a

k














2
1/ 32

4




k

aa
a











dt

dx
FFkx

dt

dx
c

dt

xd
m lx sgn

2

2

Equation of motion

Amplitude-based

function

Energy conservation
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Assumption: Average thrust is a linear function

of x1, x2, and duty.

Convert to back-EMF    
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