

Switchable Frequency Response **Based on Electropermanent Magnet Actuator** for Wide-range Operation of Electromagnetic Devices Masayuki Kato, and Fumiya Kitayama (Ibaraki University, Japan) E-mail: masayuki.kato.actuator@vc.ibaraki.ac.jp

Introduction

Linear oscillatory actuator (LOA) is an electromagnetic actuator that has been used in a wide range of industrial applications due to its simple structure and high efficiency.

Frequency response of LOA is invariant because it is intrinsically determined by mechanical parameters of a mass-spring-damper system. If the frequency response can be switched, the LOA can be operated over a wider range of frequencies.

This paper proposes a new LOA with switchable frequency responses. The proposed LOA switches its degree-of-freedom (DOF) by connecting and separating an electropermanent magnet (EPM).

Linear Oscillatory Actuator with Detachable Electropermanent Magnet

Selection of Absorption/Desorption Device

The switchable frequency response curve requires the following three properties: #1. Unnecessary electromagnetic force does not occur during the 2-DOF oscillation #2. The absorption between the mover and EPM is maintained during the 1-DOF oscillation #3. The 1-DOF systems is easily returned to the 2-DOF system by the desorption

Experimental Verification

Prototype of the LOA and EPM

Number of turns	150
Coil resistance	2.47Ω
Coil inductance (same magnetization)	973µH

Intermag 2023

Sendai, Japan

May 15 - 19, 2023

Cylindrical NdFeB and AlNiCO magnets (\u00f410mm x H10mm) are attached to the EPM cores Copper wire (ϕ 0.4mm, 150 turns) is wound around the two magnets

Switchable Frequency Response Curve

 $m_1\ddot{x}_1 + c_1\dot{x}_1 + k_1x_1 + c_2(\dot{x}_1 - \dot{x}_2) + k_2(x_1 - x_2)$

Motion equations

 $= f_{\rm LOA}(t) + f_{\rm EPM}(t)$ $f_{\rm EPM}$ is neglible because the EPM $m_2 \ddot{x}_2 + c_2 \left(\dot{x}_2 - \dot{x}_1
ight) + c_3 \dot{x}_2$ doe not interact with the LOA $+ k_2 (x_2 - x_1) + k_3 x_2 = -f_{\rm EPM}(t).$

1DOF $m_c \ddot{x}_1 + (c_1 + c_3)\dot{x}_1 + (k_1 + k_3)x_1 = f_{\text{LOA}}(t).$

Conclusion and Future Works

- This paper presented a new LOA that switches its frequency response curve by changing its DOF. An EPM was suitable device to switch the DOF because the EPM was able to turn on/off its attractive force with a slight power consumption.
- The proposed technique is applicable to vibrational energy harvesters(VEHs). We will design a new wideband VEH using our technique. We will also extend our technique by connecting multiple EPMs in series. The extended N DOF system (one LOA and N-1 EPMs) is able to switch 2^{N-1} frequency response curves \rightarrow significant improvement on the overall frequency response

Electromagnetic Actuators Laboratory, Ibaraki University