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Background ~What Is Soliton ?~

Soliton = Solitary wave+ on (a prefix representing the nature of a particle)
[ A pulsed wave that maintains its shape and constant velocity |

Motion of one soliton Overtake and collision of two solitons

1-soliton, ¢=0.50 n 2-soliton-collision, = 0.05
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Feature 1 Feature 2
Unchanged shape and velocity Stable before and after collision
(Correspond to “the law of inertia”) (Correspond to “conservation of momentum”)

» Much attention have been paid to unique behaviors of the soliton
» The soliton has been observed in various nonlinear systems
(fluid, optics, polymer chemistry, and electrical circuit)



Soliton in Discrete System (Circuit)

« Soliton was excited experimentally on a nonlinear LC ladder circuit array
— Linear inductors and nonlinear capacitors are interconnected like a ladder
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= soliton solution

» Rotating magnetic field is generated if the ladder circuit is connected annularly
» Magnetic soliton is excited when using magnetic saturation of iron core effectively

[1]: Ryogo Hirota, “Studies on Lattice Solitons by Using Electrical Networks,” J. Phys. Soc. Japan, 28 (1970) pp. 1366-1367



Final Goal and Achievement
Typical AC motors Magnetic soliton motor

Inductor
Y Y

3-phase PWM inverter 3-phase AC
Motor

» Current: transmit as a wave

» Design: integrated system (simpler
Inverter and motor with a function of
rotating magnetic field)

» Current: switched by power transistors :

> Design: integrated system (inverter and !
motor) |

Final goal

> Propose a new AC motor driven by nonlinear wave phenomena (soliton)

Achievement of this study

» Excitation of a magnetic soliton by a permanent magnet flux biased inductor

» Generation of rotating magnetic field by the magnetic soliton
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Basic Structure and Operational Principle
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Permanent-magnet-flux-biased (PMFB) inductor

» Bias flux by PM flows mainly through the stator core because of
the air-gap — shifts the operational point of the B-H curve

» Applying positive and negative current makes different (low and
high) inductance characteristics, respectively



Comparison of Operatlonal Principle

Nonlinear inductor without PM
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FEA Results

Inductance characteristic is calculated through
electromagnetic field analysis employing 2-D
axisymmetric finite element method

2T

oT

Saturation

| = +5A

)

» Magnetic saturation occurs only when inductor current Is positive



Exponential Inductance Characteristic
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» Proposed inductor has exponential property of inductance
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Magnetic Soliton Excited on LC Circuit
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» Proposed LC circuit has soliton solutions (pulsed magnetic flux wave)



Numerical Simulation Condition

Mover yoke —
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Simulation condition
Parameter Symbol Value
Capacitance (uF) C 100
Amplitude of flux at center (mWb) a 24.4
Degree of spread K 1.0
Angular frequency (rad/s) Jij 1820
Times step (us) - 50
Number of inductors - 27
Number of step - 500
Time elapsed (s) - 2.3
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Time Evolution of Magnetic Soliton

€ Initial magnetic flux at Os was set so that one soliton can be excited
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» Stable solitons remain for a long time without changing their shapes



Time Evolution of Inductor Current
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» Air-gap flux density is low because soliton uses saturated region

» Effective magnetic path is not formed
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Flux Density Animation

% Circularized based on the structure of the PMFB inductor described before

Time evolution of flux
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Rotational speed

Moved across 10 LC arrays in about 0.7s
- 15400 rpm

» Rotating magnetic field is successfully
generated (low air-gap flux density)
» Single soliton was not obtained
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Conclusion and Future Works

€ Permanent-magnet-flux-biased inductor
» Realized an exponential inductance characteristic due to the PM bias flux

€ LC ladder circuit array composed of PMFB inductors and capacitors

» Proved the existence of a soliton solution mathematically from the form of the loop
equation

» Excited two stable magnetic solitons with different velocity through simulation
» Visualized rotating magnetic field with low air-gap flux density

Wishful thinking

Magnetic soliton has a great potential to create new electromagnetic devices
(Motors, actuators, and sensors).

Use of only single half-bridge inverter is expected to be enough for generation of
rotating magnetic field, without using a conventional three-phase inverter.

» Structural development in magnetic circuit of PMFB

» Driver for supplying electrical energy into a decayed soliton
» Speed control of the rotating magnetic field
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Toda Lattice and Soliton Potential (r )
- a 25
Toda potential =—g ™ o
oda pO entia (D(r) b € +ar 20 Anharmonic
Harmonic
15
Force f(r)=—¢'(r)=ale ™ -1) b
5
2
Toda lattice equation |m 2” =a(2e‘brn —e‘br"-l—e‘brnﬂ) 5
dt -7 -6 -5-4-3-2-1012 3 45 6 7

Solution =Y —Yn = _Fl log (1+sinh® xsech? (xn - Bt +5))

» Toda lattice differential equation has a soliton solution

+ a—bsinhzc
\' ' m

Ref: Morikazu Toda, “Nonlinear oscillation and soliton”, NIPPON HYORON SHA, in Japanese



Air-gap flux density

Low flux density

\Li = +5A

Saturation
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» Air-gap flux density Is low because the soliton uses saturated region

» Effective magnetic path is not formed

» Improved structure of inductor is necessary in order to allow more

magnetic flux to pass through



